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Abstract, 'We determine the eigenvalues of the transfer matrices for mte.grable o e quantum
spin chains which are associated with the affine Lie algebras Agn B,El), 3 oD and which
" have the quantum-algebra invariance U, (C,), Ug(Bp), Ug(Cn). Uq (Dr), respectwely

We recently generalized in [1] the analytical Bethe ansatz for integrable open S})m chaing
with quantum-algebra invariance which was developed in [2] to the entire Az.-: series of
U (Bn)-mvanant spin chains in the fundamental representation. (The analytical Bethe ansatz
for closed spin chains with penodlc boundary conditions was formulated by Reshetikhin [3].)
We focused in [1] on the Az‘,1 series because we sought to identify the main difficulties in
generalizing the analytical Bethe ansatz procedure to any affine Lie algebra, and the Aéi)
series was particnlarly convenient since the Izergin—Korepin [4] Ag') case was already
understood {2}, The main difficulties were computing the pseudovacuum eigenvalue of the
transfer matrix, and formulating an appropriate ansatz for general eigenvalues.

In {1} a ‘doubling postulate’ (i.e. that the Bethe ansatz equations are ‘doubled’ with
respect to those of the corresponding closed chain with periodic boundary conditions) was
introduced, This postulate was suggested by the structure of the Bethe ansatz equations in
previously solved cases of open spin chains with quantum-algebra invariance. Using this
*doubling postulate’, we were able to easily formulate an appropriate ansatz and obtain the
transfer matrix eigenvalues|. Very recently this procedure was used for the G2 spin chain
by Yung and Batchelor [S). These authors have further generalized this method to certain
open spin chains which are not quantum-algebra-invariant [5, 6].

The eigenvalues of the transfer matrix have been obtained (by means of the algebraic
Bethe ansatz) also for the A open spin chains [7, 8], and the B open spin chain [9].

The success of the analytlcal Bethe ansatz procedure gives us confidence that the
same procedure should work for the remammg series of quantum-algebra-invariant open
spin chains, with Hamiltonian H = Ej 1 dRJ ja1 () /duly=o . Here R(u) is the R matrix
associated with an affine Lie algebra g and with the fundamental representation of g,
where gg C g® is the maximal finite-dimensional subalgebra of g‘®. Unfortunately, the

§ Perrmanent address: Physics Department, University of Miami, Coral Gables, FL 33124, USA,

|| This postulate provides a shert-cut for obtaining the transfer matrix eigenvaiues. In principle, this postulate can
be avoided, and the transfer matsix eigenvatues obtained by carefully implementing the constraints of analyticity,
crossing, fusion, asymptotic behaviour and perfodicity. In practice, however, this can be quite tedious.
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(diagonal) K matrix which is needed to construct the corresponding transfer matrix is known
only for the following additional series of R matrices [101: AZ |, BY, ¢, DI, We
therefore restrict ourselves to these cases.

Specifically, in this paper we determine the eigenvalues of the transfer matrices for the
following four infinite series of quantumn-algebra invariant open spin chains:

U,(Cy)-invariant Ag?_, spin chains;

U, (By)-invariant B (n > 1) spin chains;
U,(Cp)-invariant C" spin chains;
Uy(Dy)-invariant D) spin chains.

We emphasize that within the class of integrable open spin chains, those spin chains
which are quantum-algebra invariant are in certain respects the simplest ones. Indeed, for
the quantum-algebra-invariant spin chains, the Bethe ansatz states are highest-weight states
of the quantum algebra [11-14]. Moreover, for those open spin chains which are not
quantum-algebra invariant, the Bethe ansaiz equations have additional factors depending on
some boundary parameters. )

We therefore work with solutions R(u) [15,16] of the Yang-Baxter equations which
are associated with the affine Lie algebras g® = (AD B, Cc®, DD) and with the
fundamental representation of the Lie algebras gy = (C,, B, , Cy;, D,), respectively. The
corresponding matrices R(#) commute with the generators of the quantum algebras Ug{go).
In the appendix we collect the necessary information about these solutions. We follow the
notation of [1].

QOur goal is to determine the eigenvalues of the transfer matrix [7, 10]

t() = tr, My Tu(u) () (1)
where

T,(u) = Run () Ray_1(u) -~ Ryy(ut)

To(u) = Rya(u) - - - Ry_10() Rua(m)

with the subscript @ denoting the auxiliary space while the subscripts 1,..., N refer to
quantum spaces. The matrix M is given in the appendix. It is related to the crossing matrix
V, M= V'V, where

Riy(u) = Vi Ria(—u—p)* Vj 3

@

with
—tr —2kn for Agzn)_;
p= @
~2in for BY, C, DY

and k = (2n, 21— 1, 2n+2, 2n —2) for (A2, BM, C®, DM, respectively. The
transfer matrix commutes with U/;(go) [17, 12]. We consider simultaneous eigenstates of
the transfer matrix #{u) and the n Cartan generators {H;, ..., H,} of U;(go). We call the

corresponding eigenvalues A™-+"=(y) and {Aq, ..., A}, respectively. The eigenvalues of
the Cartan generators are related to the integers my, ..., m, by [3]}

My ={N—mi,m —ma,..., Mgy —my} for BV

(AMy={N—=—mim —mg,....Mp_2~Mp] —Mp, Mp_| — My} for D

(M}={N—m,m;—ma,..., My —2my} for A(Zi)_i, C,(,” .

t Here we cotrect a typographical error in [3] for the case C,E”.
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We choose A®t—~™)(y) to correspond to a highest-weight vector for the corresponding

To accomphsh the analytical Bethe ansatz program we must specify the following

additional information:
(i) The crossing relation [2]

A(rm ..... m,,J(u) = AWM. mn}(_u —0) - (5)

with p given by (4).
(if) The: fusion formula [2]

f\(m"""’”“)(u) = g(zu +2p) A(m;,...,m,,}(u) A(m;.....m,,)(u +p)

|
a@) u)?

—L(u+ p)* 9(2u + p) 9(—2u - 3p)}. ' {6)
where
¢(u) = g(u)g(—u) 0
o) = { 2sinh(% + 27) cosh(¥ +xn)  for AD ®
2sinh(§ — 2n) sinh(% + «7) for B, ¢, DY
.and

@ cosh(§ — k) for A(i)_l
Qi) =

sinh(% — «n) for BM, C{D, D§Y ®)
Blu) = sinh(x — 2kn) .

The fusion formula will be used in order to check the correctness of the pseudovacuum
eigenvalue.

(iii) The transfer matrix is penodlc t(u) = t{u+2mi), and its eigenvalues A("‘1 ) (1)
are analytic functions of u.

To obtain the psendovacuum eigenvalue of the transfer matrix we compute its
expectation value in the pseudovacuum state for N =2, 3 and we obtain

22 az 22 42
AC-D 0 = ¢ leMufn‘ _ 0| Mamn [ mi__ H
b2 —c? et—ak, (2—bd(c?—al,)

-2

2N M) & &
b 1 mm
+ [Pu( + 2)-[—e. [bz“dim + (bz—cz)(bz—d%m):“

d? a,f,] & g2
A~ 2t (aZ,, — %)@k, — b%) } (10

+a2N Mnm’?{1+ 2

where py = Z_“Z’ M;;, with M; being the matrix elements of M given in (A19);
d* = Z"‘:zl a,fu, and ayg, b, ¢, and & are given in (A3), (A4) in the appendix. m = 2n for
AD |, C?, DO and m = 2n + 1 for BD,

We postulate that equation (10) is true for all N. Using Mathematica we find the
following expressions for the pseudovacuam eigenvalue:
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for AZ
sinh(# — 2icn) cosh(n — wn)
sinh(u — 2n) cosh(u —«n)
sinh(z} sinh(u — 2kn)
sinh(u — 2n) sinh{x — 2(x — 1))
sinh(x) cosh({u — (2 — w)n)

+b@y* po

- 11
“+amm (1) sinh(z — 2(c — 1)n) cosh(z — &) -
for B, ¢, DY:
inh(z — 2«n) sinh(u — wn)
2O ) — ey S .
() = c(u) sinh{z — 2) sinh(x ~ k1)
- sinh(u) sinh(x — 2in)
+b )™ po sinh(u — 2n) sinh(z — 2(k — D)
oy  sinh{e)sinh(x — (2x — w)n)
Ty (1) sinh(x — 2(_;( — D) sinh(u — «n) (12)
where
2 sinh(kn) cosh((x — 2)n) for BIU. p
sinh(27) " (13)
Po=- :
2sinh{(2n — 2)n) cosh(2nn) for AQ
Sinh(27) e
l k—2 for C{V
. (14)
k+2  for AY |, BM, DY

and c(u), b(t), dmm(u) are defined in the appendix. This eigenvalue is consistent with the
fusion equation (6), i.e. the expression for AQ-0(y) does not have poles for values of u
for which e(u) or B(u) are zero.

For the dressing of these eigenvalues we make the following ansatz,
For Ag,)_,: :

Trrvtied () — 4 1) o Sinh(z —=2k7n) cosh(i — wn)
A W) = AT W) ey o 2 cosh(a — k)

sinh(x) cosh(u — (2x — w)n)
sinh(z — 2(x — 1)) cosh{x — k7))

+C) (1)@ (1) 2N

n=1
+o™ [Z 216 B ™) + w) E}"’*‘""*”(u)]} (15)

=t
for B, C{, D

(TR DI o Sinh(u — 2icn) sinh(u — wn)
AT (@) = ATV(w) cw) sinh(u — 25) sinh(u — k1)

sinh(u) sinh(z — (2 — w)n)
sinh(u — 2(x — D)) sinh(uz — xn)

+CTNU) G ()Y

n—1
+b(u)2N { Iw(u) B}Ean(u) + Z[Z[(M)B[(m!-mrﬂ)(u) + Zl(u) El(mr-mm(u):”
I=1

(16)
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whete I = 1 for B{"Y and I = 0 in the other cases. The functions A, B, C are the doubles
of the corresponding expressions given by Reshetikhin [3] (apart from slight changes in
notation) and so._are also invariant under u}‘) — —u}”:

AP () f—‘[ sinh(3(z — »§") + n) sinh(3 e + ") + 1)
) = > .
joi sinh(g(u — uf?) —n) sinh(3 (e + ;") = ) a7

Cmly) = AP (—y — P)

By ]'E['Si"h(%(u — ") = ({ +2)n) sinh(G( +uf’) - T+ 2)m)
{ =

=1 sinh(L(u — 4y — in) sinh(3(u + 20’y — In)

'x met sinh(L (e — ¢y — ¢ — D) sinh(G e+ ) - ¢ - D)
j=1 sinh(3 (e — uf*D) — (¢ 4+ D) sinh(§ e+ ) — ¢+ D)

2
I=1,...,n—-2 for AZ ,,CV
l=1,...,n—1 for B (18)
I=1,...,n—3 for DV

ﬁf’""m’“)(u) — Bl(mr.mm)(___u - 2)

- 19)
Z(w) = 7(—u — p) iI=1,....,n—1 }
for Ag)_l:
girpmoy = F 200G =)~ 04 D) st ) = v b
" it sinh(d (e — « D) — (0 — D) sinh(L@ + 1) — (n - D)
5 me sinh(u — 1" — 2(n — 2)n) sinh(x + 4" — 2(n — 2)n) 20
el sinh(z — uj(-") = 2ny) sinhiu + uf,.") —2ny)
for B{:
By = ﬁ sinh(}(u — %) — (n — 2)m) sinh(3u + 1) — (2 — 2)7)
" i sinh(d (u — u¥™) ~ ny) sinh(L(u + ui™) — )
| SinhG - w) — (n + D) sinh(3u + 1) — (n + 1)) on
sinb (4 (e — 4™y — (o — D) sinh(E + ™) — (n — D)
for C{V:
B 'i-[ sinh(3 (e — uf*™P) — (2 + D) sinh(E(u + u{™) — (n + D) ‘
u) =
el jo1 sinh(G (e — &™) — (n — D) sivh(3 e+ — (e — D)
e sinh(L(u — u™) — (n — 3)n) sinh(u +u) — (n — 3
. GO 4) ~@=In) G~ =Bn)

j=1 sinh(3 (e — &) — (n + D) sinh(3(e + 1) = (n + 1)
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for D{V:

(e 1) i3 sinh(3(z — ") — nn) sinh(d (a + u("_z)) n)
Bn—?. (u) = l—[ . 1 fn—Z'J ==,
je1 Sinh(3(x — )— (n 2)7)) smh( (u T u y— _(n — )

'iz:[l sinh(2 (u — uj.““”) — (n = 3)n) sish(3( +u"™") = (n — 3)n)
X "
joi sinh(G (e — u""D) = (n = D) sinh(3 (e + )" ~ (n = D)
y ﬁ sinh(}(u — 1) — (n — 3)n) sinh((w + 1) — (n — 3)n)

g sinh((u —~ ™) — (n — 1)n) sinh((x + 1) — (n — L)

j=l1

"ﬁ-l sinh($(u — 1) = (2 - 3)m) sinh(G(a + ") ~ (2 = 3)y)

B(mnl-t-mn}(u) - -
’ j=t sinh(§(x —u"V)y — (2 ~ D) sinh(3( + u* ™) = (- D)

o sinh(%( — u") — (n+ 1)) sinh(L(e +u™) - (o + 1)n)
jot sinh(E @ — 4} — (2 — D) sinh(L(u +u]”) — (2 — 1))

(23)

We note that in contrast to the analytical Bethe ansatz procedure for closed spin chains,
equations (15), (16) also contain the unknown functions z;(), w(x). As mentioned in the
introduction, these functions can be determined by the so called doubling postulate, i.e. we
demand that the Bethe ansatz equations obtained from the cancellation of poles in A, B, C
be ‘doubled’ with respect to those in Reshetikhin’s paper [3]. The doubled Bethe ansatz
equations are

sinh(Lul® — ) 1 1"1[ sinh( (= 1®) - 21) sinh(3@® + ") — 29)
sinh(Luf” + 1) i sinh(§(e” — ulPy + 27) sinh (L + 4y +2m)

m sinh(3(ul” — u) + ) sinh(G (e’ +ui) + 1)
X

(24)
=1 smh(i (ufcl) - }2)) - smh(i (ui” + uf)) - 1)
7z sinh(3 (e’ — uf ™) +n) sinh(y (u“"+u“‘”)+n)
 ir sinh(G el — 1) — ) sinh(G @ + 68 ~
m sinh(L (e — 4™y — 2n) sinh(-(u‘”+u‘.” —27)
XH 28"k f
i sinh (L@ — u®) +2n) sinb(3 @ + 1) +-21)
mest sinh(3 (g’ — #8) + 1) sinh(G @ + 60y + 1) "
* | h( O — Dy _ o e T B L Gy @5
j=1 sinh(z (e — ;") — n) sinh(3 (s, +u; ) —m)
where
I=1,...,n—1 for BV
I=1,...,n—2  for AP c® (26)

I=1,...,n-3 for D

Moreover, the Bethe ansatz equations corresponding to values of I = 1,2, ..., # which are
not included in (26) are as follows:



for B(":

(n—1)
Mt sinh (L (u™” — u}”_l)) + 1) sinh(%(u,&") +u )+ )
J ik - @ oy
% n=Tdy _ h(t ™ +ul"""y =
el sinh(%(ui) — ") — ) sinh(3 (s )

, ey
me sinh(3(af” — u{”) — ) sinh($ (" + ) - p)
x H

: " 27
n}
" inh(3 G + 1)) + )
ik sinh(%(u,(c”) — ;") + 1) sinh(3(x, ; |
@ .
for A5’ ;:
- : 1, 0=1) u(n—2)) + )
maz sinh(§ (""" — u{"") + ) sinh(S @l + u _
- 2 . O =
— sinh(l(ug’_” —uj(."_z)— 7) smh(%(uk" +u ) —1n) |
J=1 2 . 1, (n—1) + u.(_,,_n) _ 27?)
. 17, {n=1} ugu—l)) _ 27?) smh(i(uk )
ey smh(i(uk - % st 1, (=1 u("_l)) +2)
* sinh(4 (@™ — u}"'”) +2n) sith(z (""" + ]
J#k 2
: —~1) {r)
i sinh(uy " 4l +2n) sinh()" ) + u{ .} +2m) 8)
. {n—1 (n 2 )
n— (m) — _I_ u n
* =1 sinh(uﬁ b u;’ —2n) sinh(zy ;
H {n} (n—1} 2
! sinh(u,f:") - uj."_” +2n) smh(u,c”) + u‘2 ” +2n;
. [ n=1) _
- b _ h + ! n
jel sinh(u,E") —u 27) sinh(u) ; g
n . (n} u'n _4‘7])
e sinh(uf(c”] - u} ) _ 4n) Smh(ufn) + '2") — (29)
x 5 - .
g sinh(u(® — uj(-" +4n) sinh(ay” +u;
for C{D: _
M2 sinh(} ()" " — u)"?) + ) sinh(A @Y + u{ 2))+ m )
] 2 n—1 n— _
1 i@l S 4% — ) sinhG ) + Py — )
a o | 7 n—1} =1y _
3 sinh(3 "™ — u"™) — 2n) sinh(G {7 +u{") - 21)
"t sinh(s (uy j T T
sinh(3 (@& — uj(."_”) +2n) sinh(3(,""" +u;
Jsk 7\
. -1} (n)
e sinh(3 ('Y — u”) + 24) sinh( (" ) + ujgn)) + 2:;; a0y
- ()_ 3 lu(‘"_l +u)_ n
8 E sinh(%(u,(;i b_ i) — 27) sinh((u} ;
. {n—1)
inh(L (@ — @y + 2n) smh(%(ufc") +u" ")+ 2n)
. Moy smh(ﬁ(uk J(' 5 Y si h(] (u(.u) + u(,;..])) — 21)
= . () _ (n— )"237 sin 2 :
i smh(i(uk u;
i=1 2 &n) {(n) 4 sinh(l(u{") + u(ul) —4n) -
e sinh(3 (s — u;) —4n) 5 (u ; 7
x[1

: ) {n)
et SN — ™) + 4n) sinh(E(u® + 1) + 4n)
J
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for D{M:
Mg smh( (u(n—zl (ln—3)) + n) Sinh(%(ui”“m + uj(_ﬂ—3)) -+ n)
072~y ) sinh (P + 1"y — )

it sinh(d(u)

!ﬁ Slnh( (u(n—2) En-Z)) - 21?) Sinh(% (u](‘n—2j + u}n-—?.)) _ 2??)
it sinh( ™ — u?™) 4 23) sinh (3@l + 1l + 21)

) smh( (e a1y (”_])) + 1) smh( (u(""” + uf,"'”) + )
X D _ 0D D L -]
=l smh(E(Mk — i I—=m smh(’i(u,c +u; )—m

ﬁ sinh(3(ay > — ) + 1) sinb(G (™ + 4™y + 1)
X
it sinh(L (g™ — u}")) —n) sinh(3(@{™? + uj(-")) - 1)

(32)

s sinh(h @d ™ — 1) + 1) sinh(@l D+l ) +4)
j=1 SIflh(-—(u("‘ 1 _ u(:ﬂ—-Z)) TD Slﬂh( (u(ﬂ—l) 4 u}n—?-)) _ n)

'ﬁ sinh(} (e — u8*™") — 27) sinh(} @ + u*) - 21)
X
7t sinh( ™D = w8y - 2m) sinh(§ " + w0y + 21)

(33)

mes sinh(3 (@ — 68P) + ) sinb( @l + ") + 1)

1= "
i1 sinh(E (@ — u?) —n) sinh(§(f” +ul ) — n)

y 1*1[ sinh(d (s — ) — 27) sinh(3(ef” +u) - 29)
ik smh(z(u(") [.")) +21) sinh(%(uf) + u}")) +2n)

Omne can therefore determine the unknown functions 7y {(u):
sinh{x) sinh(¢ — 2kn) cosh(x — wn)

(34

a) = sinh(u — 2in) sinh(z — 2({ + 1)n) cosh(u — &n)
I=1,...,n—1 for AY (35)
sinh(x) sinh{u — 2«7} sinh(x — wn)
UW) = GohGe — 20n) sinh(a — 20 + D) sinh(z — &7)
i=1,...,n=1 for B, c®, pi (36)
w() = sinh(u) sinh(z — 2cn) for BY 37

sinh{u — 2nn) sinh(k — 2(n — 1)n)

We have obtained expressions for the transfer matrix eigenvalues, equations (15)-
(23), (35)-(37). These expressions pass a number of checks similar to those performed
in [1] for the Ag,) case. We are therefore confident that these are the correct eigenvalues.

‘We conclude by listing some unsolved problems.

The cases which remain to be treated are D{?, DG) and (with the exception of Gm)
all the exceptional affine algebras. For these cases, the R andfor K matrices are not yet
known.

As was noted in the introduction, the analytical Bethe ansatz method has been further
generalized [3,6] to certain open spin chains which are not quantum-algebra-invariant;
namely, spin chains for which the K matrix is diagonal but is not necessarily equal to the
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identity matrix. (For a spin chain with a non-diagonal X matrix, the analytical Bethe ansatz
method presumably does not work, since an eigenstate (e.g. the pseudovacuum state) of the
transfer matrix is not available.) It would be interesting to find new diagonal K matrices,
and to diagonalize the corresponding transfer matrices..

Other open problems include formulating the algebraic Bethe ansatz for open spin
chains (this is known only for the cases AD and B{"); studying further examples of
models with spins in higher-dimensional representations; and investigating ‘graded’ models
associated with solutions of the graded Yang—Baxter equations. Perhaps the most interesting
outstanding problem is to use the Bethe ansatz results to investigate boundary phenomena
in the thermodynamic (N — oo} limit.
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Appendix. The R matrix

The R matrices associated with the fundamental representation of A ., B(D, ¢V, p
were found by Bazhanov [15] and Jimbo [16]1. We follow the latter work; however, we
use the variables # and 7 instead of x and %, respectively, which are related as follows:

x=¢ k=e™. (A1)
The R matrix is given byi

R@)=c() ) Euq® Eau+bW) D Eae® Egg
ada’ . aEfp o

+ (e(u) Z +§(H) Z ) Ea’ﬂ ® E,Ga + Zaaﬂ(u)Ea,B @ E&’ﬂ’
of

a<faip o> okp
(A2)
with
c(u) = 2smh(% - 277)
b(u) = 2sinh(%) cosh(f ~ k) for Ay,
(1) = ~274/2 sinh(2n) i )
e{u) = —2e™"=g U sinh(z — «n) for B, CiP, DY

e(u) = e*e(u)

t The Am | R matrix given in [15, 16) is U, (D) invariant. We consider here a df ﬁ’eren: Am | R matrix, which
instead is U (C,) invariant. We obtain [18] the latter R matrix from the C,f” R matrix by rcplacmg {(in the
notation of the fiest paper in [16]) £ = k2% by £ = —k?; j.e. by changing £ — —£4~2, The R matrix cbtained
in this way presumably coincides with the U, (C, }-invariant Azi) 1 R matrix of Kuniba [19]. We remark that the
Am R matrix given in [16] can be obtained from that for D by changing & — —£k?, Similarly, the Am R
matrix, which is U, (B,) invariant, can be obtained from the B R matrix by changing £ — —&k%.

t This expression for the & matrix differs from the one given in [16] by the overall factor 2e#++27,
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cosh(3 — (k — 2)n)

2sinh(3) x
sinh(5 — (k — 2))

b(u) + 2 sinh(27) sinh(2x — 1)

2
for AD | ,
e=8a#a
for B, €, DM

for B,E]) a=po=q

Qg (1) = [ Feqepe™ 20PN ginh &
—8ap cOSh(¥ — «7) for A(z)_
2 sinh 27e™/2 x o8 2 2t s B
€gepet = HE— M ginp &
—8ug sinh(§ — k1) for BM, ¢, DO
(Ad)
where
2n for AD |
2n—-1  for B®
K= {A5)
2n+2 for ¢
2n~2  for D®
and
«—3 Igagn
&= for AL |, CV (A6)
@+ nt+l<a<n
N
@ +-% 1€ < ;- !
. N+ 1
i=1!q = for B, DY (A7)
a1 )
a—3 N+1 <ag<N
2
o, b= ,...,ﬁ (AS)
¢=N+1-uo
1 fori<a<gn p 0
Cp = for A5, C
R forn+1<agn et e (A9)
=1 for B, D

where N =2n for AL, |, CV, DY and N = 2n+1 for BY; and the E,z are elementary

matrices. Evidently, the R matrix acts on the tensor product space C¥ @ CV.
In addition to obeying the Yang—Baxter equation, this R matrix satisfies the following

important properties.

PT symmetry.
Pz Riz2(#) Piz = Roy(z) = Rea(u)™.

(A10)
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Unitarity.

Ry2(#) Ru(—u) = {(u) (ATD)
where {(u) is given by

[ —4sinh(% — 277) cosh(% — k)
x sinh{% + 2n) cosh(% + kn) for Aﬁ)_l
g(u) = 1 (A12)
4sinh(3 — 27) sinh(% — «n)
x sinh(% + 25y sinh($ -+ kn) for B, C, DI,

Crossing symmetry.

Rip(w) =V, Rlz_(—u —p)* Vi =V,? Rio(—u — p)t V3 (A13)
where p = —iw — 2kn for Af,)_] and p = —2un for BN, €, DI, algo V2 = 1.
Regularity.

R(0) = —£(0)7P (Al4)
where P is the permutation operator

?=ZEaﬂ®Eﬁa- : (Al15)

o,

Commutativity.

[ﬁ(u), fz(u)] -0 R=PR. (A16)
Periodicéty.

R(u+2xi) = R(u) . (A1)

The crossing matrix is given by
V = Euabaw — 3 €5 Egee . (A18)
ae’
Correspondingly, M = V* V is given by the N x N diagonal matrix
o :
diag (2@ e2@n=2n g e,  eT2-Bm g=20nm) for A2, c®

diag (e2(2n-—l)n cZ(?.n-’:l)rf eZq 1 e—Zq 6—2(2::—3)11 e-—2{2n—l)n) for B(])
E vy k] 3 LA | ’ . R

diag (ez(z"'z)”, g2~ q.1,..., e, e_z(z“"z)") for DIV,

(A19)
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